Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Citrate gel process and thermoelectric properties of Ge-doped In2O3 bulk ceramics

Identifieur interne : 003311 ( Main/Repository ); précédent : 003310; suivant : 003312

Citrate gel process and thermoelectric properties of Ge-doped In2O3 bulk ceramics

Auteurs : RBID : Pascal:11-0216272

Descripteurs français

English descriptors

Abstract

Indium oxide ceramics doped with different doping levels of germanium (from 0 to 10 at.%) were prepared with nano-sized powders obtained by citrate gel process. Ge for In substitution in the In2O3 bixbyite structure below the solubility limit (about 0.5-1 atom%) leads to a large decrease in the electrical resistivity and the absolute value of the Seebeck coefficient. X-ray diffraction and scanning electron microscopy show the presence after sintering of well dispersed secondary phases In2Ge2O7 when the Ge solubility in the In2O3 matrix is passed. The thermal properties measurements confirm that the decrease in the lattice thermal conductivity observed in these composite materials can be attributed to the presence of insulating In2Ge2O7 phases. Furthermore, preliminary microwave sintering experiments have been tested in order to keep the nanoscale after sintering. Particular nano-microstructures were obtained due to minimal grain growth induced by this rapid sintering process.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0216272

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Citrate gel process and thermoelectric properties of Ge-doped In
<sub>2</sub>
O
<sub>3</sub>
bulk ceramics</title>
<author>
<name sortKey="Combe, E" uniqKey="Combe E">E. Combe</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratoire CRISMAT, UMR 6508 ENSICAEN, 6 Bd Maréchal Juin</s1>
<s2>14050 Caen</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Basse-Normandie</region>
<settlement type="city">Caen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chubilleau, C" uniqKey="Chubilleau C">C. Chubilleau</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratoire CRISMAT, UMR 6508 ENSICAEN, 6 Bd Maréchal Juin</s1>
<s2>14050 Caen</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Basse-Normandie</region>
<settlement type="city">Caen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Berardan, D" uniqKey="Berardan D">D. Berardan</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratoire CRISMAT, UMR 6508 ENSICAEN, 6 Bd Maréchal Juin</s1>
<s2>14050 Caen</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Basse-Normandie</region>
<settlement type="city">Caen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Guilmeau, E" uniqKey="Guilmeau E">E. Guilmeau</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratoire CRISMAT, UMR 6508 ENSICAEN, 6 Bd Maréchal Juin</s1>
<s2>14050 Caen</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Basse-Normandie</region>
<settlement type="city">Caen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Maignan, A" uniqKey="Maignan A">A. Maignan</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratoire CRISMAT, UMR 6508 ENSICAEN, 6 Bd Maréchal Juin</s1>
<s2>14050 Caen</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Basse-Normandie</region>
<settlement type="city">Caen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Raveau, B" uniqKey="Raveau B">B. Raveau</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratoire CRISMAT, UMR 6508 ENSICAEN, 6 Bd Maréchal Juin</s1>
<s2>14050 Caen</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Basse-Normandie</region>
<settlement type="city">Caen</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0216272</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0216272 INIST</idno>
<idno type="RBID">Pascal:11-0216272</idno>
<idno type="wicri:Area/Main/Corpus">003236</idno>
<idno type="wicri:Area/Main/Repository">003311</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0032-5910</idno>
<title level="j" type="abbreviated">Powder technol.</title>
<title level="j" type="main">Powder technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Composite material</term>
<term>Doping</term>
<term>Microstructure</term>
<term>Microwave</term>
<term>Nanoparticle</term>
<term>Oxide ceramics</term>
<term>Powder</term>
<term>Scanning electron microscopy</term>
<term>Sintering</term>
<term>Solubility</term>
<term>Thermal conductivity</term>
<term>Thermal properties</term>
<term>X ray diffraction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Céramique oxyde</term>
<term>Dopage</term>
<term>Poudre</term>
<term>Solubilité</term>
<term>Diffraction RX</term>
<term>Microscopie électronique balayage</term>
<term>Frittage</term>
<term>Propriété thermique</term>
<term>Conductivité thermique</term>
<term>Matériau composite</term>
<term>Hyperfréquence</term>
<term>Microstructure</term>
<term>Nanoparticule</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
<term>Matériau composite</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Indium oxide ceramics doped with different doping levels of germanium (from 0 to 10 at.%) were prepared with nano-sized powders obtained by citrate gel process. Ge for In substitution in the In
<sub>2</sub>
O
<sub>3</sub>
bixbyite structure below the solubility limit (about 0.5-1 atom%) leads to a large decrease in the electrical resistivity and the absolute value of the Seebeck coefficient. X-ray diffraction and scanning electron microscopy show the presence after sintering of well dispersed secondary phases In
<sub>2</sub>
Ge
<sub>2</sub>
O
<sub>7</sub>
when the Ge solubility in the In
<sub>2</sub>
O
<sub>3</sub>
matrix is passed. The thermal properties measurements confirm that the decrease in the lattice thermal conductivity observed in these composite materials can be attributed to the presence of insulating In
<sub>2</sub>
Ge
<sub>2</sub>
O
<sub>7</sub>
phases. Furthermore, preliminary microwave sintering experiments have been tested in order to keep the nanoscale after sintering. Particular nano-microstructures were obtained due to minimal grain growth induced by this rapid sintering process.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0032-5910</s0>
</fA01>
<fA02 i1="01">
<s0>POTEBX</s0>
</fA02>
<fA03 i2="1">
<s0>Powder technol.</s0>
</fA03>
<fA05>
<s2>208</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Citrate gel process and thermoelectric properties of Ge-doped In
<sub>2</sub>
O
<sub>3</sub>
bulk ceramics</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Papers presented to the Symposium STPMF 2009, Science and Technology of Powders and Sintered Materials</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>COMBE (E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHUBILLEAU (C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BERARDAN (D.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GUILMEAU (E.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MAIGNAN (A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>RAVEAU (B.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CUQ (Bernard)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>RONDET (Eric)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>AYRAL (André)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Laboratoire CRISMAT, UMR 6508 ENSICAEN, 6 Bd Maréchal Juin</s1>
<s2>14050 Caen</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Montpellier SupAgro, IATE - Département SABP, 2 place Viala</s1>
<s2>34060 Montpellier</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>UMR Génie des Procédés, Eau et bioproduits, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahaut, BP 14491</s1>
<s2>34093 Montpellier</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>IEM, CC047, UM2, Place Eugène Bataillon</s1>
<s2>34095 Montpellier</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>Groupe sciences et technologie des poudres</s1>
<s3>FRA</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="02" i2="1">
<s1>Commission poudres et matériaux frittés, PMF</s1>
<s3>FRA</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="03" i2="1">
<s1>Société française de métallurgie et de matériaux, SF2M</s1>
<s3>FRA</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="04" i2="1">
<s1>Groupe français de la céramique, GFC</s1>
<s3>FRA</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="05" i2="1">
<s1>Réseau français de la mécanosynthèse, RFM</s1>
<s3>FRA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>503-508</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13653</s2>
<s5>354000192871850390</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>6 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0216272</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Powder technology</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Indium oxide ceramics doped with different doping levels of germanium (from 0 to 10 at.%) were prepared with nano-sized powders obtained by citrate gel process. Ge for In substitution in the In
<sub>2</sub>
O
<sub>3</sub>
bixbyite structure below the solubility limit (about 0.5-1 atom%) leads to a large decrease in the electrical resistivity and the absolute value of the Seebeck coefficient. X-ray diffraction and scanning electron microscopy show the presence after sintering of well dispersed secondary phases In
<sub>2</sub>
Ge
<sub>2</sub>
O
<sub>7</sub>
when the Ge solubility in the In
<sub>2</sub>
O
<sub>3</sub>
matrix is passed. The thermal properties measurements confirm that the decrease in the lattice thermal conductivity observed in these composite materials can be attributed to the presence of insulating In
<sub>2</sub>
Ge
<sub>2</sub>
O
<sub>7</sub>
phases. Furthermore, preliminary microwave sintering experiments have been tested in order to keep the nanoscale after sintering. Particular nano-microstructures were obtained due to minimal grain growth induced by this rapid sintering process.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D07Q07</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D07Q04</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Céramique oxyde</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Oxide ceramics</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Cerámica óxido</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Doping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Doping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Poudre</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Powder</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Polvo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Solubilité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Solubility</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Solubilidad</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Microscopía electrónica barrido</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Frittage</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Sintering</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Sinterización</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Propriété thermique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Thermal properties</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Propiedad térmica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Conductivité thermique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Thermal conductivity</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Conductividad térmica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Matériau composite</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Composite material</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Material compuesto</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Hyperfréquence</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Microwave</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Hiperfrecuencia</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Microstructure</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Microstructure</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Microestructura</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Nanoparticule</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Nanoparticle</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Nanopartícula</s0>
<s5>13</s5>
</fC03>
<fN21>
<s1>143</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="FRE">
<s1>Symposium Science et Technologie des Poudres et Matériaux Frittés STPMF 2009</s1>
<s3>Montpellier FRA</s3>
<s4>2009-05-25</s4>
</fA30>
<fA30 i1="02" i2="1" l="ENG">
<s1>Symposium Science and Technology of Powders and Sintered Materials STPMF 2009</s1>
<s3>Montpellier FRA</s3>
<s4>2009-05-25</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003311 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003311 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0216272
   |texte=   Citrate gel process and thermoelectric properties of Ge-doped In2O3 bulk ceramics
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024